5 research outputs found

    RF MEMS reference oscillators platform for wireless communications

    Get PDF
    A complete platform for RF MEMS reference oscillator is built to replace bulky quartz from mobile devices, thus reducing size and cost. The design targets LTE transceivers. A low phase noise 76.8 MHz reference oscillator is designed using material temperature compensated AlN-on-silicon resonator. The thesis proposes a system combining piezoelectric resonator with low loading CMOS cross coupled series resonance oscillator to reach state-of-the-art LTE phase noise specifications. The designed resonator is a two port fundamental width extensional mode resonator. The resonator characterized by high unloaded quality factor in vacuum is designed with low temperature coefficient of frequency (TCF) using as compensation material which enhances the TCF from - 3000 ppm to 105 ppm across temperature ranges of -40˚C to 85˚C. By using a series resonant CMOS oscillator, phase noise of -123 dBc/Hz at 1 kHz, and -162 dBc/Hz at 1MHz offset is achieved. The oscillator’s integrated RMS jitter is 106 fs (10 kHz–20 MHz), consuming 850 μA, with startup time is 250μs, achieving a Figure-of-merit (FOM) of 216 dB. Electronic frequency compensation is presented to further enhance the frequency stability of the oscillator. Initial frequency offset of 8000 ppm and temperature drift errors are combined and further addressed electronically. A simple digital compensation circuitry generates a compensation word as an input to 21 bit MASH 1 -1-1 sigma delta modulator incorporated in RF LTE fractional N-PLL for frequency compensation. Temperature is sensed using low power BJT band-gap front end circuitry with 12 bit temperature to digital converter characterized by a resolution of 0.075˚C. The smart temperature sensor consumes only 4.6 μA. 700 MHz band LTE signal proved to have the stringent phase noise and frequency resolution specifications among all LTE bands. For this band, the achieved jitter value is 1.29 ps and the output frequency stability is 0.5 ppm over temperature ranges from -40˚C to 85˚C. The system is built on 32nm CMOS technology using 1.8V IO device

    Lithium niobate RF-MEMS oscillators for IoT, 5G and beyond

    Get PDF
    This dissertation focuses on the design and implementation of lithium niobate (LiNbO3) radiofrequency microelectromechanical (RF-MEMS) oscillators for internet-of-things (IoT), 5G and beyond. The dissertation focuses on solving two main problems found nowadays in most of the published works: the narrow tuning range and the low operating frequency (sub 3 GHz) acoustic oscillators currently deliver. The work introduced here enables wideband voltage-controlled MEMS oscillators (VCMOs) needed for emerging applications in IoT. Moreover, it enables multi-GHz (above 8 GHz) RF-MEMS oscillators through harnessing over mode resonances for 5G and beyond. LiNbO3 resonators characterized by high-quality factor (Q), high electromechanical coupling (kt2), and high figure-of-merit (FoMRES= Q kt2) are crucial for building the envisioned high-performance oscillators. Those oscillators can be enabled with lower power consumption, wider tuning ranges, and a higher frequency of oscillation when compared to other state-of-the-art (SoA) RF-MEMS oscillators. Tackling the tuning range issue, the first VCMO based on the heterogeneous integration of a high Q LiNbO3 RF-MEMS resonator and complementary metal-oxide semiconductor (CMOS) is demonstrated in this dissertation. A LiNbO3 resonator array with a series resonance of 171.1 MHz, a Q of 410, and a kt2 of 12.7% is adopted, while the TSMC 65 nm RF LP CMOS technology is used to implement the active circuitry with an active area of 220×70 µm2. Frequency tuning of the VCMO is achieved by programming a binary-weighted digital capacitor bank and a varactor that are both connected in series to the resonator. The measured best phase noise performances of the VCMO are -72 and -153 dBc/Hz at 1 kHz and 10 MHz offsets from 178.23 and 175.83 MHz carriers, respectively. The VCMO consumes a direct current (DC) of 60 µA from a 1.2 V supply while realizing a tuning range of 2.4 MHz (~ 1.4% tuning range). Such VCMOs can be applied to enable ultralow-power, low phase noise, and wideband RF synthesis for emerging applications in IoT. Moreover, the first VCMO based on LiNbO3 lateral overtone bulk acoustic resonator (LOBAR) is demonstrated in this dissertation. The LOBAR excites over 30 resonant modes in the range of 100 to 800 MHz with a frequency spacing of 20 MHz. The VCMO consists of a LOBAR in a closed-loop with two amplification stages and a varactor-embedded tunable LC tank. By the bias voltage applied to the varactor, the tank can be tuned to change the closed-loop gain and phase responses of the oscillator so that Barkhausen’s conditions are satisfied for the targeted resonant mode. The tank is designed to allow the proposed VCMO to lock to any of the ten overtones ranging from 300 to 500 MHz. These ten tones are characterized by average Qs of 2100, kt2 of 1.5%, FoMRES of 31.5 enabling low phase noise, and low-power oscillators crucial for IoT. Owing to the high Qs of the LiNbO3 LOBAR, the measured VCMO shows a close-in phase noise of -100 dBc/Hz at 1 kHz offset from a 300 MHz carrier and a noise floor of -153 dBc/Hz while consuming 9 mW. With further optimization, this VCMO can lead to direct RF synthesis for ultra-low-power transceivers in multi-mode IoT nodes. Tackling the multi-GHz operation problem, the first Ku-band RF-MEMS oscillator utilizing a third antisymmetric overtone (A3) in a LiNbO3 resonator is presented in the dissertation. Quarter-wave resonators are used to satisfy Barkhausen’s oscillation conditions for the 3rd overtone while suppressing the fundamental and higher-order resonances. The oscillator achieves measured phase noise of -70 and -111 dBc/Hz at 1 kHz and 100 kHz offsets from a 12.9 GHz carrier while consuming 20 mW of dc power. The oscillator achieves a FoMOSC of 200 dB at 100 kHz offset. The achieved oscillation frequency is the highest reported to date for a MEMS oscillator. In addition, this dissertation introduces the first X-band RF-MEMS oscillator built using CMOS technology. The oscillator consists of an acoustic resonator in a closed loop with cascaded RF tuned amplifiers (TAs) built on TSMC RF GP 65 nm CMOS. The TAs bandpass response, set by on-chip inductors, satisfies Barkhausen's oscillation conditions for A3 only. Two circuit variations are implemented. The first is an 8.6 GHz standalone oscillator with a source-follower buffer for direct 50 Ω-based measurements. The second is an oscillator-divider chain using an on-chip 3-stage divide-by-2 frequency divider for a ~1.1 GHz output. The standalone oscillator achieves measured phase noise of -56, -113, and -135 dBc/Hz at 1 kHz, 100 kHz, and 1 MHz offsets from an 8.6 GHz output while consuming 10.2 mW of dc power. The oscillator also attains a FoMOSC of 201.6 dB at 100 kHz offset, surpassing the SoA electromagnetic (EM) and RF-MEMS based oscillators. The oscillator-divider chain produces a phase noise of -69.4 and -147 dBc/Hz at 1 kHz and 1 MHz offsets from a 1075 MHz output while consuming 12 mW of dc power. Its phase noise performance also surpasses the SoA L-band phase-locked loops (PLLs). The demonstrated performance shows the strong potential of microwave acoustic oscillators for 5G frequency synthesis and beyond. This work will enable low-power 5G transceivers featuring high speed, high sensitivity, and high selectivity in small form factors

    A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator

    No full text
    corecore